贵州大学机械工程学院;中国电信股份有限公司贵阳分公司;贵州大学公共大数据国家重点实验室;贵阳铝镁设计研究院有限公司;
针对移动机器人在多障碍物室内环境中进行路径规划时存在的折点多、收敛速度慢、易陷入局部最优解等问题,提出一种基于多策略融合改进哈里斯鹰算法的移动机器人路径规划方法。首先,利用Tent混沌映射初始化和自适应正余弦算法,改善初始种群分布多样性并增强全局搜索能力;其次,使用模拟退火能量策略改善哈里斯鹰算法的行为选择,加强算法收敛速度;然后,使用柯西函数和改进莱维飞行优化算法位置更新行为,提升算法的寻优性能和效率;最后,使用消融实验和对比实验对移动机器人在不同复杂程度的地图场景中的路径规划性能进行验证。实验结果表明:多策略融合改进哈里斯鹰算法在移动机器人路径规划问题中,不仅可以有效减少折点数获得较好的路径平滑度,还可达到更快的收敛速度和更短的移动路径。
259 | 1 | 10 |
下载次数 | 被引频次 | 阅读次数 |
[1]LUO R C,LEE S L,WEN Y C,et al.Modular ROS based autonomous mobile industrial robot system for automated intelligent manufacturing applications[C]//2020 IEEE/ASMEInternational Conference on Advanced Intelligent Mechatronics(AIM),2020.
[2]高继勋,黄全振,高振东,等.基于反演法的移动机器人轨迹跟踪控制[J].中国测试,2022,48(8):130-135.GAO J X,HUANG Q Z,GAO Z D,et al.Trajectory trackingcontrol of mobile robot based on backstepping method[J].China Measurement&Test,2022,48(8):130-135.
[3]杨博,张缓缓,江忠顺.智能车辆的避障路径规划与跟踪控制仿真分析[J].中国测试,2021,47(7):71-78.YANG B,ZHANG H H,JIANG Z S.Simulation analysis of obstacle avoidance path planning and tracking control for intelligent vehicles[J].China Measurement&Test,2021,47(7):71-78.
[4]MUHAMMAD A,ALI M A H,SHANONO I H.A review:On intelligent mobile robot path planning techniques[C]//2021 IEEE 11th IEEE Symposium on Computer Applications&Industrial Electronics (ISCAIE),2021.
[5]KHATIB O.Real-time obstacle avoidance for manipulators and mobile robots[C]//1985 IEEE International Conference on Robotics and Automation Proceedings,1985.
[6]LIU C,ZHAI L,ZHANG X Y.Research on local real-time obstacle avoidance path planning of unmanned vehicle based on improved artificial potential field method[C]//2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI),2022.
[7]CHANG L,SHAN L,JIANG C,et al.Reinforcement based mobile robot path planning with improved dynamic window approach in unknown environment[J].Autonomous Robots,2021,45(1):51-76.
[8]ZONG C F,YAO X T,FU X L.Path planning of mobile robot based on improved ant colony algorithm[C]//2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC),2022.
[9]ZHANG L,ZHANG Y J,LI Y F.Mobile robot path planning based on improved localized particle swarm optimization[J].IEEE Sensors Journal,2021,21(5):6962-6972.
[10]DASGUPTA K,ROY P K,MUKHERJEE V.Application of chaos assisted sine cosine algorithm on wind-solar integrated hydrothermal scheduling problem[J].Optimal Control Applications and Methods,2023,44(2):1026-1051.
[11]CHEN X W,LI Q X,ZHENG K,et al.Research and application of obstacle avoidance path planning based on hermite curve interpolation[C]//2023 5th International Conference on Robotics,Intelligent Control and Artificial Intelligence(RICAI),2023.
[12]HEIDARI A A,MIRJALILI S,FARIS H,et al.Harris hawks optimization:Algorithm and applications[J].Future Generation Computer Systems,2019,97:849-872.
[13]刘景森,袁蒙蒙,李煜.基于改进的樽海鞘群算法求解机器人路径规划问题[J].计算机研究与发展,2022,59(6):1297-1314.LIU J S,YUAN M M,LI Y.Robot path planning based on improved salp swarm algorithm[J].Journal of Computer Research and Development,2022,59(6):1297-1314.
[14]HUSSIEN A G,AMIN M.A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection[J].International Journal of Machine Learning and Cybernetics,2022,13(2):309-336.
[15]黄荣杰,王亚刚.基于可视图与改进遗传算法的机器人平滑路径规划[J].控制工程,2024,31(4):678-686.HUANG R J,WANG Y G.Smooth path planning for robot based on visibility graph and improved genetic algorithm[J].Control Engineering of China,2024,31(4):678-686.
[16]陈登旭,刘吉,武锦辉,等.基于改进人工鱼群算法的DIC形变分析[J].中国测试,2020,46(5):114-119.CHEN D X,LIU J,WU J H,et al.DIC deformation analysis based on improved artificial fish swarm algorithm[J].China Measurement&Test,2020,46(5):114-119.
[17]赵迪,何克勤,赵祖高.基于改进粒子群优化算法的移动机器人路径规划[J].传感器与微系统,2023,42(6):150-153.ZHAO D,HE K Q,ZHAO Z G.Path planning for mobile robot based on improved PSO algorithm[J].Transducer and Microsystem Technologies,2023,42(6):150-153.
基本信息:
DOI:
中图分类号:TP242;TP18
引用信息:
[1]胡万望,于丽娅,张涛等.应用多策略融合改进哈里斯鹰算法的移动机器人路径规划方法[J].中国测试,2024,50(09):1-12.
基金信息:
国家自然科学基金资助项目(52275480); 贵州省科技计划项目(黔科合基础-ZK[2024]一般019); 贵阳铝镁设计研究院有限公司科技项目(GYYZKY2022006JY); 贵州烟草公司科技项目(2022-14)